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NUMERICAL CALCULATION OF POTENTIAIL-ENERGY CURVES
BY RYDBERG-KLEIN-REES METHOD
by Frank J. Zeleznik

Lewis Research Center

SUMMARY

A technique is presented for the numerical evaluation of the integrals oc-
curring in the Rydberg-Klein-Rees method of calculating potential energy curves.

INTRODUCTION

The potential-energy curves for the bound states of diatomic molecules can
be obtained from spectroscopic constants by using the Rydberg-Klein-Rees method
(refs. 1 to 3). Klein (ref. 2) expressed the turning points of motion Ty,
and T in terms of two auxiliary functions f and g:

min
5 1/2
Thax = <f + E) + £

r f2 + £ 1/2 - 7T
min g

Both of the functions f and g depend parametrically on the potential
energy U and an additional parameter K = J(J + 1)n /Zp where dJ 1is the
rotational quantum number and u 1is the reduced mass. The functions £
and g are defined as
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Here E(I,K) represents the vibrational-rotational energy levels, and
I= h(v + 1/2) with v representing the vibrational guantum number. From
spectroscopic data, the energy levels are generally expressible in the form

p a
BIK) = ), Y Y1m<v + %)Z [3(3 + 1) " (3)
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where YZm are the usual spectroscopic constants. The upper limits of inte-
gration in equations (1) and (2) are obtained from E(I',K) - U = O.

Rees (ref. 3) evaluated the integrals of equations (1) and (2) analytical-
ly for special cases where E(I,K) was either quadratic or cubic in TI. The
results in the cubic case were not in a very convenient form for computation.
The results in the gquadratic case, however, have been used as the basis for
rather extensive calculations by Vanderslice and coworkers (refs. 4 and 5) and
others (refs. 6 and 7). Molecules, whose data could not be adequately repre-
sented over the entire range by a quadratic, were treated by piecewise fitting
of quadratics to the energy levels. As pointed out by Weissman, Vanderslice,
and Battino (ref. 8), this piecewise fitting can lead to errors.

The difficulty in the numerical integration of equations (1) and (2) is
caused by the fact that the denominator of the integrands has a zero at the
upper limit of integration. Jarmain (ref. 9) circumvented this problem in an
approximate manner by fitting [U - E(I,K)]l/2 to an expression of the form
e(I' - I)"%  The constants c and d were evaluated by using two points very
close to the upper limit of integration. Similarly, OE/OK was fitted to a
guadratic in I' - I. These approximations were then analytically integrated
to evaluate the contributions to f and g from regions close to I'. More
recently, Weissman, Vanderslice, and Battino (ref. 8) introduced a new integra-
tion variable x = [U - E(I,K)Y/2 in order to eliminate the singularity from
the integrands. Although correct, this procedure produces some unnecessary nu-
merical inconvenience since the integrands are available as expressions in I
and not the integration variable x. Thus, in numerical evaluation of the in-
tegrals one cannot use arbitrarily selected increments of x but rather must
select increments of I and calculate increments of x as

re = [U - B(T + aT,K) 12 - [u - B(1,x)1%/2

The technique that will be described here does not require the fitting of
the integrand near the upper limit, and further, it essentially retains the
original integration variable. It is based on the fact that the singularities
in the integrands of f and g can be easily removed by an integration by

parts.

ALTERNATE METHOD FOR NUMERICAL EVALUATTION

The quantity U - E that appears in the integrands of f and g is a
polynomial of order p in the variable I with coefficients that depend



on K. By introducing the notations x =v + 1/2 and « = J(J + 1), the
following dimensionless form is obtained:

U - E
Eq

= P(x3K) = Ai(K)xZ
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where E is a constant with the dimensions of energy and where the coeffi-
cients in the polynomial P have the explicit form

g
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In this notation the upper limit of integration I' in equations (1) and (2)
corresponds to hxj(k) where x7(k) is the smallest, real, positive root of
P(x;K).

If the existence of the improper integral f is assumed, then equa-
tion (1) implies that the polynomial P(x;«) has a zero of order one at x,(k).
If Ky 1s a particular value of «, then a change in scale z = x/xl(KO) can

be made, and the polynomial P can be written as

1% X
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where A;(k) = xi(KO)Ai(K) and where R(z;k) is a polynomial in =z of order
p - 1. If « 1is chosen equal to Kg, then equation (4) takes on the simple
form

P(z;k) = AZ(K)ZZ = (1 - z)R(z;«) (5)
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where the subscript has been dropped from Ko for convenience, and where now
1
AZ(K) = Xl(K)Ai(K)

p-1
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Comparing coefficients of like powers of =z in equation (5) establishes the
relation between BZ and AZ as



om0 1=0,1,- .., p-2
By(x) =<n=0 (6)

-1

Also from equation (5), for z = 1 one can obtain

P
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Combining this with equation (6) finally gives the result
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The numerator of the integrand of g 1s essentially BP/BK. This partial
derivative is most conveniently evaluated by using the first equality in equa-
tion (4). After the differentiation is performed, « is again chosen to be
equal to Ko- This gives, after dropping the subscript on Ko

P
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where

A,
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The integrals for f and g can be written in dlmen81onless form by
using the Bohr radius ag as a unit of length and Ey =4 /ZHa as a unit of
energy. Also, making a change in scale to the new variable =z and considering
the particular value K that is equal to K5 result in
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where the subscript on k5 has again been deleted for convenience. Substi-

tuting equation (5) for ©P(z;k) into equations (9) and (10) and performing an
integration by parts give

(1 - z)l/2 OR( z; k) a

1
= 2 - Z
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In equations (11) and (12) the objective of removing the singularity of the
integrands at the upper limit has been achieved.

For the important case K = O, the polynomial ccefficients required to

evaluate the integrands of equations (11) and (12) have the relatively simple
forms

P
AR e
Bn(O)ZZ V"‘E')—Eé— n=0,1, - -+, p-1
m=n-+1 (15)
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No difficulties were encountered in the numerical application of equations
(11), (12), and (13) to the calculation of potential-energy curves for several
diatomic molecules by using standard integration techniques. In fact, the re-
sults of single and double precision calculations for the ground state of hy-

drogen agreed to at least seven figures when using the spectroscopic constants
of Weissman, Vanderslice, and Battino (ref. 8).

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 18, 1964
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